智慧照明·节能管理

三相用电监测系统

使用说明书

文件状态	项目名称	三相用电监测系统	文档名称	使用说明书
【】草稿	文件标识	ZM- DOC	当前版本	1.0
【√】正式发布	作者	DZ	完成时间	2021-6-3
【】正在修改	页数	10	等级	中

三相用电监测系统

三相用电系统是具备采集三相电压、三相电流、三相功率和三相电量的监测装置,具有 RS485接口和LTE(4G)网络接口。具备 RS485接口的产品配合控制器或网关可实现三相用 电信息监测,配备 LTE(4G)网络接口的型号可以直接接入物联网,可以直接在手机微信或 网站上查看三相用电信息。

三相用电监测系统广泛适用于厂房、仓库、楼宇以及自控等需要电量信息监测的场所, 传感器内置电压互感器、外置卡扣式电流互感器。安全可靠, 外观美观, 安装方便。

一、功能特色

三相用电监测系统的供电是220V交流,从电压采集UA和N取电,具备RS485接口和LTE(4G)网络接口,三相电压输入接口,用于监测三相电压,6路电流检测接口,用于监测电流数据。其中电流1和电流2与电压1计算电量和功率,电流3和电流4与电压2计算电量和功率,电流5和电流6与电压3计算电量和功率。在3路电压和3路电流系统中请使用电流1、电流3和电流5.电流2、电流4、电流6用于剩余电流或辅助测量其他用电系统电流值。产品具备1路辅助开关输出,可以用于配合重合闸等产品使用,用于合闸分闸控制。

《 二、主要技术指标

供电电源: 220VAC

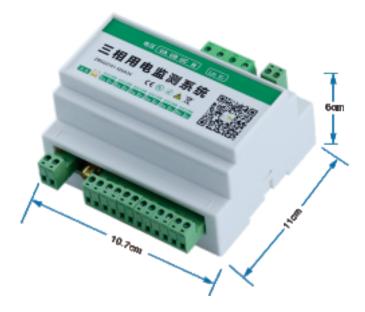
电压测量范围: 110~250VAC

电流测量范围: 0~120A(不同电流互感器略有不同)

电压精度: ±1V(默认)

电流精度: ±0.1A(默认)

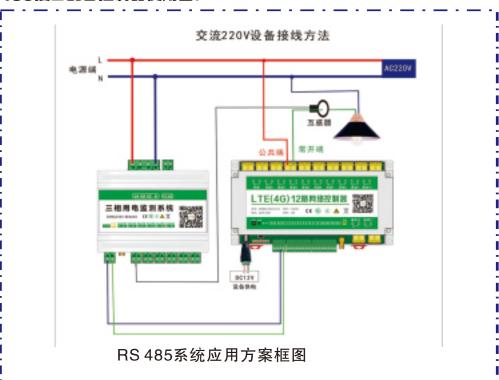
功率精度: ±1W(默认)

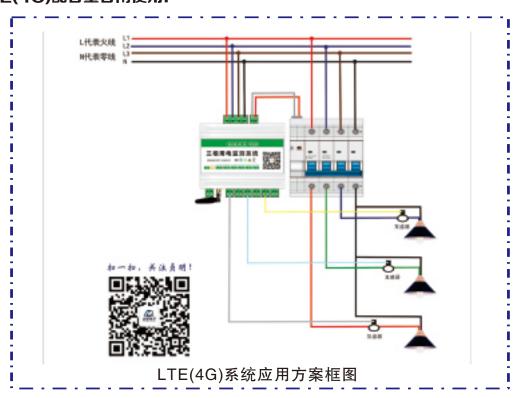

设备功耗: <=3W (默认)

存储环境: -40℃~80℃

输出信号: RS485/LTE(4G)网络

参数配置: 软件设置


整体尺寸: 110×115×60mm



三、接线说明

RS 485接口配合控制器使用图:

LTE(4G)配合重合闸使用:

四、设备安装说明

设备安装前检查

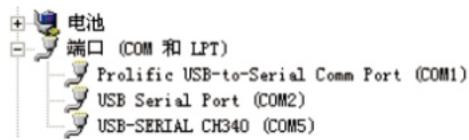
- 1、设备清单:
- ■三相用电系统设备 1 台;
- ■产品合格证、保修卡、售后服务卡等;
- ■USB 转 485(选配);

接口说明

485 信号线接线时注意 A\B 两条线不能接反,总线上多台设备间地址不能冲突。

序号	接口定义	说明
1	A, B	RS485通讯接口A和B
2	UA、N	A相电压检测接入火线和零线 设备取电接口
3	UB	B相电压检测接入火线
4	UC	C相电压检测接入火线
5	l1+ 、 l1–	电流1互感器接入接口
6	12+、12-	电流2互感器接入接口
7	13+、13-	电流3互感器接入接口
8	14+、14-	电流4互感器接入接口
9	15+、15-	电流5互感器接入接口
10	l6+、l6-	电流6互感器接入接口
11	K1、K2	辅助开关输入输出接口

五、配置软件安装及使用


1、软件选择

使用RS485测试工具软件即可。

2、参数设置

485 信号线接线时注意 A\B 两条线不能接反, 总线上多台设备间地址不能冲突。

①、选择正确的 COM 口("我的电脑—属性—设备管理器—端口"里面查看 COM 端口),下 图列举出几种不同的 485 转换器的驱动名称。

- ②、单独只接一台设备并上电,点击软件的测试波特率,软件会测试出当前设备的波特率以及地址,默认波特率为9600bit/s,默认地址为0x07。
 - ③、根据使用需要修改地址以及波特率,同时可查询设备的当前功能状态。
 - ④、如果测试不成功,请重新检查设备接线及485驱动安装情况。

六、通信协议

1、通讯基本参数

编码	8位二进制
数据位	8位
奇偶校验位	无
停止位	1位
错误校验	CRC(冗余循环码)
波特率	4800bit/s、9600bit/s可设,出厂默认为9600bit/s 地址7

2、数据帧格式定义

采用 Modbus-RTU 通讯规约,格式如下:

初始结构 ≥4 字节的时间

地址码 =1 字节

功能码 =1 字节

数据区 =N 字节

智慧照明·节能管理

错误校验 =16 位 CRC 码 结束结构 ≥4 字节的时间

地址码:为变送器的地址,在通讯网络中是唯一的(出厂默认 0x01)。

功能码: 主机所发指令功能指示, 本变送器只用到功能码 0x03(读取寄存器数据)。

数据区:数据区是具体通讯数据,注意 16bits 数据高字节在前!

CRC 码: 二字节的校验码。

主机问询帧结构:

地址码	功能码	寄存器起始地址	寄存器长度	校验码低位	校验码高位
1字节	1字节	2字节	2字节	1字节	1字节

从机应答帧结构:

地址码	功能码	有效字节数	数据一区	第二数据区	第N数据区	校验码
1字节	1字节	1字节	2字节	2字节	2字节	2字节

3、寄存器地址

寄存器	说明	06功能码
0	电压1 单位0.1V,2230表示223.0V	不支持
1	频率1 4998表示 49.98Hz	不支持
2	电流1 单位 10mA	不支持
3	电流2 单位 10mA	不支持
4	功率1 单位 1W	不支持
5	功率2 单位 1W	不支持
6	功率因素 1 范围0100	不支持
7	功率因素 2 范围0100	不支持
8	电量1 单位KWH	不支持
9	电量2 单位KWH	不支持
10	电量1 高字节 单位 WH	不支持
11	电量1 低字节 单位 WH	不支持
12	电量2 高字节 单位 WH	不支持
13	电量2 低字节 单位 WH	不支持
14	保留	不支持
15	电压2 单位0.1V,2230表示223.0V	不支持
16	频率2 4998表示 49.98Hz	不支持
17	电流3 单位 10mA	不支持
18	电流4 单位 10mA	不支持
19	功率3 单位 1W	不支持
20 功率4 单位 1W		不支持

智慧照明・节能管理

21	功率因素 3 范围0100	不支持
22	功率因素 4 范围0100	不支持
23	电量3 单位KWH	不支持
24	电量4 单位KWH	不支持
25	电量3 高字节 单位 WH	不支持
26	电量3 低字节 单位 WH	不支持
27	电量4 高字节 单位 WH	不支持
28	电量4 低字节 单位 WH	不支持
29	输出状态	输出控制0x15打开 0x1A关闭
30	电压3 单位0.1V,2230表示223.0V	不支持
31	频率3 4998表示 49.98Hz	清0电量数据 5501电量1 5506电量6
32	电流5 单位 10mA	不支持
33	电流6 单位 10mA	不支持
34	功率5 单位 1W	不支持
35	功率6 单位 1W	不支持
36	功率因素 5 范围0100	不支持
37	功率因素 6 范围0100	不支持
38	电量5 单位KWH	不支持
39	电量6 单位KWH	不支持
40	电量5 高字节 单位 WH	不支持
41	电量5 低字节 单位 WH	不支持
42	电量6 高字节 单位 WH	不支持
43	电量6 低字节 单位 WH	不支持
44	掉电保持	数值=0不保持 =1掉电保持
45	过流1	设置过流值(单位 10mA)
46	过流2	设置过流值(单位 10mA)
47	过流3	设置过流值(单位 10mA)
48	过流4	设置过流值(单位 10mA)
49	过流5	设置过流值(单位 10mA)
50	过流6	设置过流值(单位 10mA)

4、通讯协议示例以及解释

读取数据字符串: 0x07 0x03 0x00 0x00 0x00 0x32 0xC4 0x79

智慧照明·节能管理

LTE(4G)通讯方式平台查看数据:

七、常见问题及解决办法

设备无法连接到 PLC 或电脑

可能的原因:

- 1) 电脑有多个 COM 口, 选择的口不正确。
- 2) 设备地址错误,或者存在地址重复的设备(出厂默认全部为1)。
- 3) 波特率,校验方式,数据位,停止位错误。
- 4) 主机轮询间隔和等待应答时间太短,需要都设置在 200ms 以上。
- 5) 485 总线有断开,或者 A、B 线接反。
- **6)** 设备数量过多或布线太长,应就近供电,加 485 增强器,同时增加 120Ω终端电阻。
 - 7) USB 转 485 驱动未安装或者损坏。
 - 8) 设备损坏。

智慧照明・节能管理

八、应用场合

契合各种场所测量需求,配电柜、二级箱柜、末端的配电箱等。如:变配电室低压配电出线回路、居民楼或社区、智慧园区、工业园区、需要实现智能用电控制的农业科技大棚等、酒店、旅游区等配电台区、商场、银行、写字楼等综合建筑群医院、学校等人员密集的场所、博物馆、文化馆等国家级文物保护单位、砖木或木结构建筑、其他火灾危险性大的电力线缆或设备需设置监控节点的位置。

九、使用注意

高压强电,请勿触摸!请勿短路!单相电表或产品接线时请断开电源!请专业电工接线操作!